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Diffusive thermal dynamics for the Ising ferromagnet
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We introduce a thermal dynamics for the Ising ferromagnet where the energy variations occurring within the
system exhibit a diffusive character typical of thermalizing agents such as, e.g., localized excitations. Time
evolution is provided by a walker hopping across the sites of the underlying lattice according to local prob-
abilities depending on the usual Boltzmann weight at a given temperature. Despite the canonical hopping
probabilities the walker drives the system to a stationary state which is not reducible to the canonical equilib-
rium state in a trivial way. The system still exhibits a magnetic phase transition occurring at a finite value of
the temperature larger than the canonical one. The dependence of the model on the density of walkers realizing
the dynamics is also discussed. Interestingly the differences between the stationary state and the Boltzmann
equilibrium state decrease with increasing number of walkers.
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I. INTRODUCTION AND MOTIVATIONS

Consider an Ising ferromagnet consisting of an assem
of N spins, each placed at a site of ad-dimensional Euclidean
lattice. Let lowercase italic lettersi , j , . . . denote such site
andsi ,sj , . . . denote the relevant spin variables, so that
energy pertaining to a given configurations5$si% i 51

N has the
form

E~s!52
1

2 (
i 51

N

si(
j ; i

sj , ~1!

where the symbol; in the second sum restricts it to sitesj
adjacent toi.

As is well known, the Ising model@1# is amenable of an
exact solution on simple two-dimensional lattices@2,3#,
whereas for more complex lattices or higher dimensions
study of its thermodynamic properties strongly relies on
meric simulations. According to the so-called dynam
Monte Carlo method, the thermodynamic canonical aver
of a generic observableX(s) is obtained as a simple alge
braic average over the Markov chain of configurations p
duced by a suitable stochastic algorithm@4#. Indeed each
configuration is obtained from the previous one so that
the asymptotic limit, the probabilityPT(s) that a given con-
figuration s occurs at temperatureT is proportional to the
Boltzmann canonical factor exp@2T21E(s)# independent of
the initial configuration.

One of the most commonly exploited algorithms is t
Glauber’s single-spin-flip algorithm@5#. According to Glaub-
er’s prescription two subsequent configurations can diffe
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most by the value of a single spin variable. More precis
the spin of the configurations relevant to the sitek can flip
with probability

pT
G~s,k!5

1

11exp@T21DEk~s!#
, ~2!

where

DEk~s!52sk(
i;k

si ~3!

is the energy variation consequent to the process. Glaub
dynamics is completely defined by Eq.~2! together with a
prescription for updating the spin system. The latter is co
monly chosen in view of a computational optimization a
typically consists in an unphysical sweep along parallel
tice lines@6#.

As we mentioned above such a dynamics has a comp
tional rather than physical origin, having been devised as
efficient way to give estimates of the canonical averag
Nevertheless a physical interpretation is usually given@4#:
the energy variation consequent to the spin-flips realizing
evolution of the system occurs due to the coupling of
spin degrees of freedom to a heat bath at temperatureT.

In the last decade a number of new dynamics for the Is
model were introduced@7–9#, where the energy variation
are typically required to occur uniformly throughout th
whole sample. Here we introduce an alternative dynam
exhibiting the diffusive behavior of a random walk in a
evolving landscape generated by the energy of the spin c
plings in real space. The spin flips are induced by a rand
walker hopping across the sites of the underlying discr
structure. The motion of such a random walker is affected
the spin interaction, being biased towards those sites whe
spin flip is energetically more favorable. It should be r
marked that a relaxation dynamics occurring under the ac
of random walkers was introduced by Creutz@10#, and sub-
sequently exploited by many authors. However, our walk
©2002 The American Physical Society21-1
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act quite differently from Creutz’sdemons. Indeed the latter
diffuse freely, unbiased by the magnetic configuration of
system and, in order to simulate the microcanonical
semble, they induce a spin flip only if they can afford
according to the individual energy they are endowed with

In fact our model in inspired by the physical behavior
manganites@11#, such as LaxCa12xMnO3, where the spin
dynamics is determined by the presence of diffusing exc
tions interacting with the magnetic degrees of freedom.
particular, for manganites the excitations are given by
charged carriers, electrons, and vacancies, present in the
stoichiometrical compounds. Obviously, this model is not
tended to be a phenomenological description of such c
plex systems, but rather to evidence the influence
diffusing excitations interacting with spins on the thermod
namic behavior of the paradigmatic model of all magne
phase transitions.

The analysis of the diffusive dynamics is carried out fro
the numerical point of view. All the simulations illustrated
the present paper refer to two-dimensional arrays of spins
that the observed features of the statistical model can
compared to the analytically known results pertaining to
canonical Ising model.

The plan of the paper is as follows. In Sec. II we descr
and briefly discuss the diffusive algorithm. Sections III a
IV are devoted to the analysis of the limit situation where
dynamics is realized by a single walker. In the former
provide numerical evidences that the magnetic system
driven to a thermodynamically well-behaved steady st
which differs from the canonical equilibrium state in a no
trivial manner. Since a magnetic phase transition is still
served, the consequent critical behavior is analyzed in S
IV. The estimated critical exponents do not deviate sign
cantly from the values pertaining to the canonical Isi
model. In Sec. V the results of simulations where the sys
is subject to more than a single walker are analyzed. Sec
VI contains our conclusions.

II. DIFFUSIVE THERMAL DYNAMICS

As we mentioned in the previous section the relaxat
dynamics we propose is realized by means of random w
ers diffusing through the sites of the Ising system. The pr
ability that a walker located at sitei hops on sitej and flips
the relevant spin, wherej is one of the 2d neighbors ofi, is
given by

pT~s,i , j !5~2d!21pT
G~s, j !. ~4!

Hence, for any configurations of the Ising system and fo
any value of the temperatureT, the diffusion of the walker is
biased towards those sites where a spin flip is more likely
occur according to Glauber’s probability, Eq.~2!. Note that
Eq. ~4! implicitly yields the probability

pT~s,i ,i !512~2d!21 (
k; i

pT
G~s,k! ~5!

that the walker does not move. If this is the case the m
netic configuration of the systems remains unchanged a
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well. According to Eqs.~4! and~5! the evolution of the prob-
ability P(s,i ,t) that, at time stept, the magnetic system is in
the configurations while the walker is located at sitei, is
governed by the master equation

PT~s,i ,t11!2PT~s,i ,t !5~2d!21(
j ; i

@PT~si8 , j ,t ! pT
G~si8 ,i !

2PT~s,i ,t ! pT
G~s, j !#, ~6!

where sk8 is a shorthand notation for the configuration o
tained flipping the spinsk of s. Unfortunately the maste
equation approach is of very little use in analyzing the lon
time behavior of this process. Actually in the canonical h
bath case the master equation was exploited to build a
namics driving the system to a known asymptotic proba
ity. This was obtained by imposing the quite restrictive d
tailed balance condition. Conversely, we introduced
evolution algorithm and our aim is the study of the resulti
asymptotic state of the Ising system, if any. Hence we ca
out our analysis mainly by means of numerical simulatio
For a better comparison we focus on the two-dimensio
system, where most of the results pertaining to the canon
Ising model are exactly known. Hence all of our simulatio
refer to an Ising system consisting ofN5L2 spins placed at
the sites of a two-dimensional square lattice. In order
avoid time consuming procedures dealing with the walk
bumping into the borders of the system we adopt perio
boundary conditions.

In the next two sections we focus on the situation wh
the evolution of the Ising system is realized by a sing
walker. This is a limiting case, in that, for a reasonably ma
roscopic system, it corresponds to a vanishing density
walkers. The results pertaining to larger densities are
cussed in Sec. V.

III. NONCANONICAL EQUILIBRIUM STATES

In the following we give numerical evidence that the sp
flip dynamics realized by a single walker drives the magne
system to a thermodynamically well-behaved steady s
which differs from the canonical equilibrium state in a no
trivial manner. All the simulations we performed show th
at a given value of the external parameterT the system even-
tually reaches a steady state, characterized by a well defi
value of the~time! average of the macroscopic observabl
These features are clearly recognizable in Figs. 1 and
where the average values of the specific energye(s)
5N21E(s) and magnetizationm(s)5N21( i 51

N si are plotted
for systems with different sizes, at a fixed value of the te
perature parameter. Furthermore, as one would require,
entire sample and any reasonably macroscopic portion o
are characterized by the same specific values of the ther
dynamic observables. As is clearly shown in Figs. 3 and
the fluctuations about the average value of the specific t
modynamic observables exhibit the expected scaling beh
ior, decreasing as the inverse square root of the system
Figure 5 shows the average values of the specific energy
magnetization at different values of the temperature par
1-2
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eterT5b21. Note that, similar to the canonical Ising mode
the system exhibits a magnetic phase transition. We veri
that the long time behavior of the macroscopic observab
of the system is uniquely determined by the only exter
parameter characterizing the dynamics, namely, the temp
ture T. In particular different choices for the initial configu
ration of the magnetic system do not affect the asympt
behavior of the system, except for a possible trivial bias
the orientation of the spontaneous magnetization. Simila
what happens in the heat bath case, both of the poss

FIG. 1. Finite size scaling for the specific energy of an Isi
system subject to the diffusive dynamics described in Sec. II aT
52.4. All the measurements were carried out in the stationary
gime. The error bars represent the fluctuations about the ave
values.

FIG. 2. Finite size scaling for the specific magnetization of
Ising system subject to the diffusive dynamics described in Se
at T52.4. All the measurements were carried out in the station
regime. The error bars represent the fluctuations about the ave
values. Note that despite the symmetry of the Hamiltonian the m
sured value for the specific magnetization is nonzero. Similar to
canonical case the Ising system displays a phase transition.
03612
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orientation of the specific magnetization are in princip
equally likely, but a strongly magnetized initial configuratio
is very likely to evolve in a stationary state exhibiting
spontaneous magnetization along the same direction. W
the initial configuration has no net magnetization there is
bias on the direction of the spontaneous magnetization
hibited by the system below the critical temperature. In t
situation the formation of macroscopic domains exhibiti
opposite net magnetization is observed~see Fig. 6!. In the
long time regime one of the domains eventually preva
against the others. As we already mentioned, the system
hibits a magnetic phase transition. From Figs. 5 and 6, i
clear that the criti-
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FIG. 3. Finite size scaling for the fluctuation about the avera
value of the specific energy for an Ising system subject to the
fusive dynamics described in Sec. II atT52.4. The slope of the
linear fit ~dotted line! of the measured data (d)20.4860.02 is in
good agreement with the expected value 0.5. All the measurem
were carried out in the stationary regime.

FIG. 4. Finite size scaling for the fluctuation about the avera
value of the specific magnetization for an Ising system subjec
the diffusive dynamics described in Sec. II atT52.4. The slope of
the linear fit~dotted line! of the measured data (d) 20.4860.02 is
in good agreement with the expected value 0.5. All the meas
ments were carried out in the stationary regime.
1-3
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cal temperature for the diffusive dynamics is significan
larger than the value pertaining to the canonical Ising mo
Such a value,Tc

Ising52/ln(11A2)'2.269 is analytically
known and the heat bath dynamics yield quite satisfact
numerical estimates of it. As we will see in the next secti
accurate estimates yield the valueTc52.61260.002 for the
critical temperature of an Ising system evolving under
action of a single walker. However, such a quantitative d
ference cannot be accounted for by means of a simple
caling of the temperature. Indeed if the diffusive dynam
acted as heat bath dynamics with a rescaled temperaturT8
5t(T), the generic configurations would occur with a prob-
ability P(s,T)}exp@2T821E(s)# in the asymptotic regime
@4#. Hence the joint probability for the occurrence of a co
figuration such thate(s)5e8 andm(s)5m8 would be of the
form

P~e8,m8,T!5Z~T!J~e8,m8!e2T821Ne8, ~7!

FIG. 5. Macroscopic observables for a 4003400 Ising array.
Filled circles (d), specific magnetization; open circles (s), spe-
cific energy.

FIG. 6. Typical configurations for a 4003400 Ising array with
magnetization̂m&50.86 for the diffusive dynamics~left panel! and
the Glauber’s dynamics~right panel!. Note that the same magnet
zation is attained for different temperatures. More preciselyTdiff

52.4.TIsing and TGlauber52.13,TIsing, whereTc
Ising52/ln(11A2)

'2.269 is the critical temperature of the canonical Ising mod
Note further that in the diffusive case the domains present smoo
boundaries.
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J~e8,m8!5(
s

d„e82e~s!…d„m82m~s!… ~8!

and

Z~T!5 (
m8e8

J~e8,m8! e2T821Ne85(
s

e2T821E(s). ~9!

The last equality of Eq.~9! was obtained making use of Eq
~8!. Now note that, according to Eqs.~7! and ~8!,

P̃~e,m,T![
P~e,m,T!

(mP~e,m,T!
5

J~e,m!

(mJ~e,m!
. ~10!

Hence, if the rescaling hypothesis was true, the plot
P̃(e,m,T) versusm at a fixed value of the specific energ
would not depend on the temperature: the curves pertain
to the same specific energy at different values of the te
peratureT would overlap. This can be verified with grea
precision in the case of the heat bath dynamics@12#. The
numeric estimates of these curves for two different values
the specific energye are plotted in Figs. 7 and 8. The fac
that the curves pertaining to the diffusive dynamics at diff
ent temperatures are very distinct from one another and f
the ~temperature independent! curve characterizing the ca
nonical Ising model proves that the differences between
diffusive and the heat bath dynamics cannot be accounted
by means of a simple rescaling of the temperature.

In summary the steady state asymptotically reached by
Ising system subject to the action of the diffusive dynam
is thermodynamically well behaved, and yet it is nontrivia
different from the canonical equilibrium of the Ising mode
Hence we will refer to the steady state of the diffusive d
namics as a noncanonical equilibrium state. In the follow

l.
er

FIG. 7. Normalized joint distributionsP̃(e,m,T) for a 20320
Ising array subject to the diffusive dynamics. All of the curves re
to the specific energye50.220. Open circles (s), T52.25; filled
circles (d), T52.50; crosses (3), T52.75; and dotted line, hea
bath dynamics~temperature independent!.
1-4



em

in
ag

is
th

th
dy
d
ic
v
r

r
o

th
ic

e
te

la
g
ra

of

nt
the
t
m

fe per-

line
l

el-

ive
m
s-
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section we analyze the critical behavior of the Ising syst
subject to the diffusive dynamics.

IV. CRITICAL BEHAVIOR

As we already observed in the previous section, an Is
system subject to a single diffusive walker exhibits a m
netic phase transition at a finite value of the temperature~see
Fig. 5!. Similar to what happens with the Ising model, th
phenomenon is accompanied by a singular behavior of
thermodynamic functions. In Fig. 9 accurate data for
magnetization of an Ising system subject to the diffusive
namics are plotted. The error bars represent the standar
viations about the average values. Similar to the canon
case, the data show a good agreement with a critical beha
of the formm(T);uT2Tcub, where the estimated values fo
the critical temperature and for the critical exponent areTc
52.61260.001 andb50.12760.02, respectively. The latte
result is in good agreement with the relevant critical exp
nent of the two-dimensional canonical Ising model,b Ising
51/8. As we already discussed in the previous section,
critical temperature is appreciably larger than the canon
valueTc

Ising'2.269.
Figure 10 shows the specific heatc(T)5d ^e&T /d T for a

4003400 Ising array subject to the diffusive dynamics as
function of the temperatureT. The vertical dashed lines ar
placed at the critical value of the temperature. The dot
curves refer to functions of the formf (T)5a1b log(uT
2Tcu), and they fit the data quite satisfactorily. Hence, simi
to the canonical case, there is a strong signature of a lo
rithmic divergence of the specific heat at the critical tempe
ture. Figure 11 shows a log-log scale plot of the quantity

x f~T![
N

T
@^m2&T2^m&T

2# ~11!

FIG. 8. Normalized joint distributionsP̃(e,m,T) for a 20320
Ising array subject to the diffusive dynamics. All of the curves re
to the specific energye50.345. Open circles (s), T52.50;
crosses (3), T52.75; diamonds (L), T53.00; and dotted line,
heat bath dynamics~temperature independent!.
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versusuT2Tcu. The data are consistent with a power law
the form x f(T);uT2Tcug, and the slopeg51.7360.06 of
the linear fit is in good agreement with the critical expone
governing the behavior of the same quantity in the of
canonical caseg Ising57/4. We recall that for a system a
canonical equilibrium the fluctuation-dissipation theore
yields the relationsc(T)5cf(T) andx(T)5x f(T), where

r
FIG. 9. Critical exponentb of the magnetization for an Ising

system subject to the diffusive dynamics. The measures were
formed on a system consisting ofN5200032000 spins. The error
bars denote the standard deviation of the measures. The dotted
is the best fit,y5A uT2Tcub. The estimated values for the critica
temperature and for the exponent areTc52.61260.001 andb
50.12760.002, respectively. The latter is consistent with the r
evant critical exponent of the canonical Ising modelb Ising51/8.
The vertical dashed line indicates the critical temperature.

FIG. 10. Specific heat for an Ising system subject to diffus
dynamics (d). The dotted curves fitting the data are of the for
f (T)5a1b log(uT2Tcu). The vertical dashed line indicates the e
timated value of the critical temperature,Tc52.61260.002. The
diamonds (L) refer to the quantitycf (T) defined in Eq.~12!.
1-5
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cf~T!5
N

T2
@^e2&T2^e&T

2# ~12!

andx(T)5] ^m&T,h /] h is the magnetic susceptibility of th
system. In our case this is not necessarily true, since
equilibrium distribution for a diffusive dynamics at the tem
peratureT is not proportional to the canonical Boltzman
factor exp@2T21H#, as we discussed in the previous sectio
Hence the critical behavior of two quantities canonically
lated by a fluctuation-dissipation relation should be explic
analyzed and compared. A preliminary step in this sens
shown in Fig. 10, where the diamonds represent the e
mates of the quantitycf(T) defined in Eq.~12!. These results
seem to indicate that the diffusive character of the dynam
does not produce large deviations from the fluctuati
dissipation relation. Of course this result needs to be chec
through the analysis of the response of the system to
external magnetic field. However, we mention that oth
studies@13# of Ising systems subject to dynamics which
not yield the canonical equilibrium state actually estimate
critical exponentg in terms of the quantityx f(T) defined in
Eq. ~11!.

For temperatures sufficiently far from the critical valu
the correlation function

GT~ i , j !5^si sj&T2^si&T ^sj&T ~13!

exhibits an exponential decrease as the distance betwee
relevant sitesr i j 5uu i 2 j uu increases:

GT~ i , j !}expF2
r i j

j~T!G . ~14!

As is shown in Fig. 12 the correlation distancej(T) features
a maximum very close to the critical temperature. The f

FIG. 11. Log-log scale plot of the magnetic susceptibilityx f

~defined in terms of the magnetic fluctuations, see Eq.~11!! versus
uT2Tcu. The estimated slope of the straight line fitting the data
21.7360.07. This value is consistent with the critical behavior
the magnetic susceptibility for the two-dimensional canonical Is
model, characterized by the critical exponentg Ising57/4.
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that this maximum suggests a critical temperature sligh
larger than the value previously~and more accurately! esti-
mated must be ascribed to finite size effects. We further m
tion that the correlation lengths are roughly consistent wit
power-law divergence of the formj(T);uT2Tcu2n, the es-
timated exponent being remarkably close to the relev
critical exponent of the canonical two-dimensional Isi
model n Ising51. As is well known @14#, for temperatures
very close to the critical value, and hence for correlati
lengths very large compared to the lattice constant, the
relation function of the canonical Ising model is charact
ized by a power-law behavior of the formGT( i , j )}r i j

p . The
relevant critical exponent is defined to beh5p2d12,
where d is the dimensionality of the Ising array. For th
two-dimensional canonical Ising model its value is exac
known to beh Ising51/4. Such a behavior is expected to b
observable in the distance range 1!r ı j!j(T). As is shown
in Fig. 13, the data yielding the largest correlation length
not consistent with a pure power law behavior, not even
relatively small distances. This suggests that the relev
temperatureT52.63 is not sufficiently close to the critica
value. Moreover it should be recalled that the finite size
the system can introduce appreciable deviations from
theoretical prediction, which is strictly true in the thermod
namic limit. Nevertheless we mention that a function of t
form

f ~r !5a expS 2
r

j~T! D r 2h ~15!

fits the data quite satisfactorily over a wide range of d
tances. The estimate for the exponenth50.25260.002 is
remarkably close to the critical exponenth Ising of the two-
dimensional Ising model. A fit of the same kind satisfactor
applies to the data relevant to the temperatureT52.64, and
it gives a critical exponenth50.26660.002 once again in

s

g

FIG. 12. Correlation length as a function of the temperature
a 6003600 Ising array subject to the diffusive dynamics. Due
finite size effects, the critical behavior is exhibited for temperat
slightly higher than the estimated critical valueTc52.61260.002.
1-6
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good agreement with the canonical value. These res
could be an indication of the fact that, in the suitable regim
the correlation functionGT'Tc

( i j ) actually exhibits a power
law behavior characterized by the same critical exponen
the two-dimensional canonical Ising model.

The results illustrated so far suggest that a tw
dimensional Ising ferromagnet subject to the diffusive d
namics exhibits a critical behavior belonging to the sa
universality class as the canonical case. Before conclud
the present section we mention a further result which has
counterpart in the canonical case. Indeed, in the diffus
case, it is possible to relate the configuration of the magn
system to the position of the random walker causing its e
lution. More precisely it is possible to measure to what e
tent the presence of the random walker at a given sitei and
the local magnetization at a given sitej influence each other
Numerical estimates of such correlation, which we illustr
elsewhere@15#, show that it exhibits a critical behavior i
correspondence with the critical temperature.

V. RECOVERING THE CANONICAL EQUILIBRIUM:
DENSITY OF WALKERS

The results illustrated in the previous two sections refe
the case of an Ising system subject to the action of a sin
walker. Here we analyze the results of simulations where
evolution of a square Ising array consisting ofN spins is
realized byn noninteracting walkers. The simulation is in
tialized giving each walker a randomly chosen position. T
or more walkers are allowed to occupy the same site of
system. Actually this is very likely to happen for a suf
ciently large density of walkersr5n/N. An elementary step
of the simulation consists in the application of the algorith
described in Sec. II to all of the walkers, according to a fix

FIG. 13. Log-log scale plot of the correlation functio
GT52.63( i , j ) versus the interspin distancer i j . The data appreciably
deviate from a power law behavior. The dotted line refers to
function of the form defined by Eq.~15!. The exponenth is quite
close to the critical exponenth Ising51/4. More precisely we esti-
mateh2.6350.25260.002. The same fit satisfactorily applies to t
data relevant toT52.64, where the exponenth2.6450.26660.003
is once again in good agreement with the canonical value.
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progressive sequence. When its turn comes, a given wa
acts as if the other ones were not present. A qualitative a
ment leads us to expect that in the case of an infinite den
of walkers the results pertaining to the canonical Ising mo
are recovered. Consider a very large density of walkers, s
that n@N. In this situation the effect of a single step of th
simulation is very similar to the action of the Glauber’s d
namics with a random sequence update. Indeed the prob
ity that a walker flips a given spinsi is given by the product
of the probability 4/N that it is located at one of the fou
neighbors of sitei times the hopping probabilitypG(s,i )/4.
But pG(s,i )/N is exactly the probability that the spinsi is
flipped at any step of the Glauber’s heat bath dynamics w
a random site update. Hence, in the limit case of an infin
density of walkers, the diffusive dynamics should necessa
drive the system to the same asymptotic state as the heat
dynamics, thus reproducing the results of the canonical Is
model. The same should be clearly true for a sufficien
large density of walkers, provided that the consequent nu
ber of elementary steps of the heat bath dynamics drive
system sufficiently close to the canonical equilibrium sta
The numerical simulations we performed evidenced that
diffusive dynamics drives the Ising system to a thermod
namically well behaved stationary state, so that the aver
values of the specific energy and magnetization are cha
terized only by the temperatureT and the density of walkers
r. In particular they confirmed the qualitative argument d
cussed above: the results pertaining to the canonical I
model at a given temperatureT were recovered for a suffi
ciently large density of walkers. More generally we verifie
that the average value of a macroscopic observable rele
to a finite density lies within the interval between the valu
pertaining to the limit situations, namely, the vanishing de
sity limit r5N21;0 analyzed in Secs. III and IV, and th
canonical Ising model. The influence of the dens

FIG. 14. Critical temperatures with increasing density of wa
ers for a 4003400 Ising array. The horizontal dotted lines a
placed at the critical temperatures of the diffusive dynamics wit
single walker (Tc'2.612) and at the critical temperature of th
canonical Ising model (Tc

Ising'2.269).
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of walkers is synthesized in Fig. 14, where the estima
values of the critical temperature are plotted. Note that
larger variation occurs for densities between 1022 and 1.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper we exploited the basic microscopic mode
diffusion, namely, the random walk, to build a dynamics f
the Ising ferromagnet which retains the diffusive characte
the thermal motion of a localized excitation. In this fram
work the density of walkers is related both to the intens
and spatial extent of the coupling of the spins to the ther
degrees of freedom of the system, and hence to the velo
of the thermal dynamics. The larger the density of walke
the faster the dynamics and the closer to the uniform h
bath are its effects.

Even if our model is rather simplified with respect to t
real physical systems which inspired it, it exhibits importa
qualitative features which should be relevant even in m
complex and realistic situations. Therefore it would be
great interest to verify whether the diffusive thermal dyna
ics gives a satisfactory description for the slow evolution
a magnetic system with hopping excitations. This would
course require the extension of the study of its effect to
more realistic three-dimensional lattice. In view of recogn
ing the action of a diffusive dynamics in a real system,
l
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results of Sec. IV suggest that the study of the critical beh
ior is not particularly significant. Indeed the latter does n
allow one to discriminate between the canonical and dif
sive dynamics.

On the other hand, the results illustrated in Sec. V indic
that the velocity of the nonequilibrium dynamics~related to
the degree of coupling of the spins to the thermal vibratio
i.e., to the density of excitations induced in the system by
external source! significantly affects the critical temperatur
of the system. Hence the same system subject to diffu
thermal dynamics with different velocities should displ
different critical temperatures. Furthermore we remark t
Fig. 6 suggests that the velocity of the dynamics influen
the shape and growth of the macroscopic magnetic doma

In particular a very slow diffusive dynamics gives rise
domains with smoother boundaries. This feature sugg
that the final shape of the magnetic domains within a phy
cal system possibly governed by a diffusive thermal dyna
ics could be controlled by fine tuning the density of exci
tions mediating the coupling to the thermal degrees
freedom. A detailed study of domain growth in the diffusiv
dynamics will be the subject of a forthcoming paper@15#.
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